Vascular Guidance: Microstructural Scaffold Patterning for Inductive Neovascularization

نویسندگان

  • Daniel Muller
  • Harvey Chim
  • Augustinus Bader
  • Matthew Whiteman
  • Jan-Thorsten Schantz
چکیده

Current tissue engineering techniques are limited by inadequate vascularisation and perfusion of cell-scaffold constructs. Microstructural patterning through biomimetic vascular channels within a polymer scaffold might induce neovascularization, allowing fabrication of large engineered constructs. The network of vascular channels within a frontal-parietal defect in a patient, originating from the anterior branch of the middle meningeal artery, was modeled using computer-aided design (CAD) techniques and subsequently incorporated into polycaprolactone (PCL) scaffolds fabricated using fused deposition modeling (FDM). Bone marrow-derived mesenchymal stem cells (MSCs) were seeded onto the scaffolds and implanted into a rat model, with an arteriovenous bundle inserted at the proximal extent of the vascular network. After 3 weeks, scaffolds were elevated as a prefabricated composite tissue-polymer flap and transferred using microsurgical technique. Histological examination of explanted scaffolds revealed vascular ingrowth along patterned channels, with abundant capillary and connective tissue formation throughout experimental scaffolds, while control scaffolds showed only granulation tissue. All prefabricated constructs transferred as free flaps survived and were viable. We term this concept "vascular guidance," whereby neovascularization is guided through customized channels in a scaffold. Our technique might potentially allow fabrication of much larger tissue-engineered constructs than current technologies allow, as well as allowing tailored construct fabrication with a patient-specific vessel network based on CT scan data and CAD technology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding.

Neurovascular alignment is a common anatomical feature of organs, but the mechanisms leading to this arrangement are incompletely understood. Here, we show that vascular endothelial growth factor (VEGF) signaling profoundly affects both vascularization and innervation of the pancreatic islet. In mature islets, nerves are closely associated with capillaries, but the islet vascularization process...

متن کامل

Patterning the surface roughness of a nano fibrous scaffold for transdermal drug release

The main objective of this paper was to manipulate the Nano Fibrous Scaffold "NFS" surface roughness to achieve a new transdermal drug release profile. To assess the intrinsic mechanical properties of Nylon 6 or polycaprolactam, such as its proper resiliency, it was considered as the matrix. Cetirizine was used as a drug model and was loaded (1% w/v) to polymer solution (30%w/v) before spinning...

متن کامل

Patterning the surface roughness of a nano fibrous scaffold for transdermal drug release

The main objective of this paper was to manipulate the Nano Fibrous Scaffold "NFS" surface roughness to achieve a new transdermal drug release profile. To assess the intrinsic mechanical properties of Nylon 6 or polycaprolactam, such as its proper resiliency, it was considered as the matrix. Cetirizine was used as a drug model and was loaded (1% w/v) to polymer solution (30%w/v) before spinning...

متن کامل

EphB4 controls blood vascular morphogenesis during postnatal angiogenesis.

Guidance molecules have attracted interest by demonstration that they regulate patterning of the blood vascular system during development. However, their significance during postnatal angiogenesis has remained unknown. Here, we demonstrate that endothelial cells of human malignant brain tumors also express guidance molecules, such as EphB4 and its ligand ephrinB2. To study their function, EphB4...

متن کامل

Microfluidic Tissue: a Biodegradable Scaffold with Built-in Vasculature for Cardiac Tissue Vascularization and Surgical Vascular Anastomosis

To tackle tissue vascularization, a robust 3-D micro-patterning technique was developed to create complex bioscaffolds from a synthetic biodegradable elastomer (Poly(octamethylene maleate (anhydride) citrate) by pre-patterning, solidifying, and stamping thin polymer sheets layer-by-layer to form intricate micro-structures. The bio-scaffold contains an 3-D perfusable branched network which suppo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2011  شماره 

صفحات  -

تاریخ انتشار 2010